Temperature dependence of the spin torque effect in current-induced domain wall motion.
نویسندگان
چکیده
We present an experimental study of domain wall motion induced by current pulses as well as by conventional magnetic fields at temperatures between 2 and 300 K in a 110 nm wide and 34 nm thick Ni80Fe20 ring. We observe that, in contrast with field-induced domain wall motion, which is a thermally activated process, the critical current density for current-induced domain wall motion increases with increasing temperature, which implies a reduction of the spin torque efficiency. The effect of Joule heating due to the current pulses is measured and taken into account to obtain critical fields and current densities at constant sample temperatures. This allows for a comparison of our results with theory.
منابع مشابه
Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers.
Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit...
متن کاملDeterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque
Spin-polarized electrons can move a ferromagnetic domain wall through the transfer of spin angular momentum when current flows in a magnetic nanowire. Such current induced control of a domain wall is of significant interest due to its potential application for low power ultra high-density data storage. In previous reports, it has been observed that the motion of the domain wall always happens p...
متن کاملRole of entropy in domain wall motion in thermal gradients.
Thermally driven domain wall (DW) motion caused solely by magnonic spin currents was forecast theoretically and has been measured recently in a magnetic insulator using magneto-optical Kerr effect microscopy. We present an analytical calculation of the DW velocity as well as the Walker breakdown within the framework of the Landau Lifshitz Bloch equation of motion. The temperature gradient leads...
متن کاملDomain wall motion by the magnonic spin Seebeck effect.
The recently discovered spin Seebeck effect refers to a spin current induced by a temperature gradient in a ferromagnetic material. It combines spin degrees of freedom with caloric properties, opening the door for the invention of new, spin caloritronic devices. Using spin model simulations as well as an innovative, multiscale micromagnetic framework we show that magnonic spin currents caused b...
متن کاملIncrease of spin-transfer torque threshold current density in coupled vortex domain walls
We have studied the dependence on domain wall structure of the spin-transfer torque current density threshold for the onset of wall motion in curved, Gd-doped Ni80Fe20 nanowires with no artificial pinning potentials. For single vortex domain walls, both for 10% and 1% Gd doping concentrations, the threshold current density is inversely proportional to the wire width and significantly lower comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 97 4 شماره
صفحات -
تاریخ انتشار 2006